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In a recent paper [1] the use of streamlines and

heatlines for visualization purposes is considered, and

specially their use in conjugated conduction/convection

heat transfer problems. Special emphasis is devoted to

the treatment of the diffusion coefficient for the heat-

function, using a so-called ‘consistent formulation’. The

main difference on this work [1] relative to a previous

work on the subject [2] relies on the treatment of such

diffusion coefficients. It is claimed that the diffusion

coefficient for the heatfunction must be invariant over

the solid and fluid portions of the domain, taking the

value of unity over all domain, contrarily to what is

explained in [2]. The present comment is centered on the

definitions of the diffusion coefficients for the heatfunc-

tion (and also for the streamfunction the massfunction,

as the main goal is a completely unified treatment),

where it is shown that such diffusion coefficients are not

constant over all the domain, contrarily to what is

claimed in [1] and in complete accordance with [2].

Starting from the steady general conservation equa-

tion for / written as
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function Uðx; yÞ is defined through its first-order deriv-

atives
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Assuming that / is a continuous function to its second-

order derivatives, equality of the second-order cross

derivatives, o2/=oxoy ¼ o2/=oy ox leads to the differen-

tial equation for U,
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where it is evident that the natural diffusion coefficient

for U is CU ¼ 1=C/. It should be noted that U is treated

as a conserved variable, its solution being obtained fol-

lowing the same (conservative) procedures as for / [1,2].

It is tempting to delete C/ from Eq. (3), as it is made in

[1]. However, this is not correct for a multi-component

domain, with different diffusion coefficients C/, similarly

to what happens when analyzing pure heat conduction

in contiguous media of different thermal conductivities.

Due to their physical nature, / and U must be con-

tinuous at the solid–fluid interface. From Fig. 1, at each

point of the interface s it is

/1 ¼ /2 U1 ¼ U2 ð4Þ

It should be stressed that U1 ¼ U2 guarantees the con-

servation of / through the interface.

At the solid–fluid interface s of Fig. 1, where only

diffusive transfer is present
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The conservation principle of / implies that, at the in-

terface,
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where is evident that ðo/=onÞ1 6¼ ðo/=onÞ2 if C/;1 6¼ C/;2.

A function with unequal first-order side derivatives at

a point has no first-order derivative at such point, as well

as it has no higher order derivatives. Thus, Eq. (3) can be

used through each portion of the domain with its own

diffusion coefficient, CU ¼ 1=C/, and the different por-

tions of the domain must be linked through a careful

treatment of the interfaces. Eq. (1) can be obtained iden-

tically by equating the second-order cross derivatives of

U, o2U=oxoy ¼ o2U=oy ox. This is possible only if U is a

continuous function to its second-order derivatives, and

by the same reasons as explained above for /, special
care is needed when dealing with points located at the

solid–fluid interface.
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The remaining question is to analyze the consistency

of the diffusion coefficient for U, CU ¼ 1=C/, when it is

used together with the flux boundary conditions for /
and for U at the interface. The counterpart of Eq. (7) for

U at the interface, taken as a conserved variable, is
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Similarly to Eqs. (5) and (6) for /, it can be obtained for
U that
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Substituting oU=ox and oU=oy as given by Eq. (2) on the
right sides of Eq. (9), it results the most general spatial

form of Eq. (2) for the sole diffusive situation
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From Fig. 1 it can be observed that ðDU=DsÞ1 ¼
ðDU=DsÞ2 and that ðD/=DsÞ1 ¼ ðD/=DsÞ2. In the limit

situation, when Ds ! 0, it results then
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The first result of Eq. (11) (using the second result of Eq.

(10)) was previously set by Eq. (7), invoking the con-

servation principle of / at the interface.

The second result of Eq. (11) (now using the first

result of Eq. (10)), states that
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Comparing this result with Eq. (8) it is evident that, in

fact

CU ¼ 1=C/ ð13Þ

This confirms the diffusion coefficient CU ¼ 1=C/ as

proposed and used in [2], contrarily to what was pro-

posed and used in [1], CU ¼ 1 over all domain. This is of

crucial importance when dealing with different media

with different (or even very different) diffusion coeffi-

cients. It is the unique approach that is consistent with

the treatment of both the interior domain and the flux

boundary conditions for / and for U at the interface.

When the main goal is a complete unified treatment of

the streamlines, heatlines and masslines, CU ¼ 1=C/

proves also to be the unique, correct and effective way to

do so [2].
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Fig. 1. Lines of constant / and lines of constant U, normal to
each other at any point, near the interface s between media 1

and 2 of different diffusion coefficients.
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